logo

构建高导热/导电相变材料实现太阳能光/电热转换、收集及存储的协同强化新策略

近日,上海交大制冷与低温工程研究所教授王如竹和研究员李廷贤领衔的“能源-空气-水”ITEWA创新团队(Innovative Team for Energy, Water & Air)与材料学院邓涛教授跨学科合作,在国际能源领域期刊Nano Energy上发表了题目为“Highly Conductive Phase Change Composites Enabled by Vertically-Aligned Reticulated Graphite Nanoplatelets for High-Temperature Solar Photo/Electro-Thermal Energy Conversion, Harvesting and Storage”的研究论文。论文提出了基于垂直阵列网状石墨纳米骨架的高导热/导电的功能型相变储热复合材料的制备方法和太阳能光/电-热转换、收集及存储的一体化相变储能装置的协同强化热设计新思路论文第一作者是李廷贤和博士研究生吴闽强,通讯作者是李廷贤、邓涛和王如竹。

图1. 基于功能型相变储热复合材料的太阳能光/电-热转换与存储

为进一步提高太阳能光-热相变储能性能和拓展相变储能模式,通过添加吸光材料和导电材料制备功能型相变储热复合材料,进而实现光/电-热转换与存储的一体化储能技术成为研究热点。然而,由于缺乏有效的能量转换和传热耦合设计,导致光/电-热转换时的能量损失较大,现有的光/电-热转换功能型相变复合材料具有导热/导电系数低、能量传输慢、相变温度低、能量转换效率低的局限。因此开发高性能的功能型相变储热复合材料对发展新型的高效光-热、电-热转换与存储技术具有重要的研究意义和应用价值。

图2. 基于垂直阵列石墨纳米骨架的高导热/导电的功能型相变材料及光/电-热转换与存储

论文采用压力诱导自组装方法制备了固-固相变材料季戊四醇为储热介质的高导热/导电的功能型相变储热复合材料。通过构建理论模型分析了相变储热复合材料的界面光-热转换、热量损失、能量传输与存储过程,采用串/并联模型分析了集热温度与储热驱动温差的关联特性。在此基础上提出了旨在提高相变材料光-热转换效率和储热能力的协同强化策略,即通过协调相变储热复合材料内部石墨纳米片阵列取向与太阳能光-热转换及热量传递方向的一致性来降低相变材料表面的集热温度,从而降低太阳能光-热转换与存储过程中的辐射及对流热损失,提高太阳能光-热转换存储效率。同时,该协同增强策略也可提高相变材料的电-热转换效率与热量传递及存储,从而实现基于功能型相变储热复合材料的太阳能光-热转换与存储和可再生能源风/光-电-热转换与存储。

图3 基于协同增强效应的高效光/电-热相变储能

研究工作中所制备的复合材料热导率和电导率在石墨纳米片含量25 wt%时分别高达33.5 W/mK和323 S/cm;研究在上述基础上进一步提出了能量收集与传输的协同增强策略,通过协调石墨纳米阵列取向与热能传递方向或电流方向,防止了相变材料的表面集热过热问题、降低了能量损失、加速了相变材料的光/电-热能量转换、收集、传输与存储,从而成功实现了无聚光条件下,相变温度高达186 oC的太阳能 “光-热转换-传输-存储”的直接式一体化高温储能,以及超低电压(<0.34 V)驱动的高效电-热转换与存储(>92%)。该工作提出的基于垂直阵列石墨纳米骨架的高导热/导电的功能型相变材料和能量转换与传输的协同增强方法,为相变材料的高效太阳光/电-热转换、存储和利用提供了新思路。

王如竹领衔的ITEWA团队致力于解决能源、水、空气领域的前沿基础性科学问题和关键技术,旨在通过学科交叉实现材料-器件-系统层面的整体解决方案,推动相关领域取得突破性进展。近年来在Joule、Energy & Environmental Science、Advanced Material、ACS Energy Letters、Angewandte Chemie-Int Ed、ACS Central Science、Nano Energy、Energy Storage Materials 等期刊上发表系列跨学科交叉论文。

来源:上海交通大学

论文链接:

https://doi.org/10.1016/j.nanoen.2021.106338

上一篇:35kv及以下绝缘安全工器具试验项目、周期和要求 下一篇:隐藏式摆杆输送机在涂装生产线上的应用
最新资讯